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APPENDIX A, : WANSKIAN RECURRENCE 
RELATIONS 

z&(z) +vl,(z) = Zl”_, (4, 
z&(z) -vZ,(z) = ZZ”, , (z) 

zK:(z)+vK,(z) = -S_,(z), 

zK:(z) - UK,(Z) = - rK,+, (z) 

z&(z) + d,(z) = ZJ”.. 1 (z), 

zJ:.(z)-vJ,(z) = -z.J,+,(z) 

Z;(z) = Z,(z), Kb(z) = -K,(z) 

J;(z) = -J1(z). Y;(z) = -Y,(z) 

Jo(z) Y:(z) - Y&)J:(z) = ; 

&,(z)K;(z) -K,(z)Z;,(i:) = - ; 

~,(z)K,+t(z)+K,(z)~,+t(z) =; 

J, (z em”‘) = emuxi JO (z) , 

Uze *l/zni) = e*“Zu”J,(z) 

K,(ze”/2m) = ~~xier’i2Yni[-J0(z)~iY,(z)] 

Y, (z em”‘) = e m”n’ Y,(z) + 2i sin (mun) cot (vn)J,(z) 

APPENDIX 6 : EXAMPLES TO CALCULATE 
ROOTS p. OF EQUATION 117) 

Y. (Pi) Jl (Pro) -Jo @‘rJ Y, (Pro) 
F1 08 = 6 (Pri)JI (Pro) - J, W-J Y, (b-d 

If Ft (8) = F2(B), then B = 8.. 
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INTRODUCTION 

Thermal managemem is becoming a predominant con- 
sideration in the design of IC chips and their packaging. The 
electrical behavior of devices and their reliability are strongly 
dependent both on the temperature of chip and temperature 
difference among the components. Many researchers pay 
their attention to the failure resulting from an overhigh chip 
temperature, which is always associated with irreversible 
mechanical fracture as well as loss of electrical functions. In 
contrast our efforts have concentrated on the analysis of the 
thermal failure arising from temperature difference among 
the components related to critical electrical paths. For a high- 
speed system, the component’s performance is sensitive to 
the temperature difference between them because of the prob- 
lem of signal skew, and so, the junction temperatures of 
various components should be kept within a specified range 
for a high performance system. For most chips, 0.25”C may 
be the maximum allowable value. 

When a thermal analysis was applied to the chip at the 
component level, the following Fourier’s heat conduction 
equation was usually used 

q = -Kg. 

However this equation is based on the diffusion mechanism 
and implies a presumption of infinite thermal propagation 

speed not applicable for a rapid wave heat transient process. 
Alternatively, the C-V heat conduction equation, originally 
proposed from Maxwell equation [1] and then modified by 
Cattaneo and Vernotte [24], can be used for the description 
of such a rapid heat conduction 

a4 aT 
z---q= -KG at (2) 

where z, defined as t = a/c*, is the relaxation time and ex- 
plained as the build-up period of the commencement of 
heat flow after a temperature gradient is imposed on the 
medium; c, the thermal wave propagation speed and a, 
the thermal diffusivity of the medium. 

Comparing the C-V equation (2) with the telegram equa- 
tion 

L ai 1 aE 
gz+i= -RZ (3) 

we have the complete analogy between heat transfer and 
electrical current transmission as listed in Table 1. In elec- 
trical analogy, the term z/K in equation (2) is equivalent to 
the electrical inductance L. The relaxation term can not be 
neglected in strongly transient process as that the electrical 
inductance can not be ignored for an rapid alternating cur- 
rent circuit. This is known as thermal wave phenomena. 

Several features of high speed IC chip make it important 
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NOMENCLATURE 

velocity of thermal wave propagation 
[m s-‘1 
thermal capacity [J kg-’ K-‘1 
thermal conductivity [W m-’ K-r] 
volumetric heat generation [w m-‘1 
dimensionless heat generation 
dimensionless time 
heat flux [W m-‘1 
radius [m] 

t time [s] 
T temperature [K] 
x dimensionless radius. 

Greek symbols 
d( thermal diffusivity [m’ s-l] 

ep 
density [kg m-‘1 
dimensionless temperature 

r thermal relaxation time [s]. 

Table 1. Electrical analogy of heat conduction 

Parameters Flow Potential Resistance Capacity Inductance 

Electrical 
Thermal 

i 
4 

E 
T 

R 
l/K 

C 
PC, 

L 
T/x: 

to investigate thermal wave phenomena. The first one is the 
high frequency of electrical pulse, which may be as high as 1 
GHz to 1 THz in current IC. Consequently the IC elements 
would undergo a very rapid transient process. The relaxation 
term in C-V equation (2) becomes important in this situation 
because r cYq/at is of great value. The second feature is the 
high purity of the IC base materials. For single crystal silicon 
used as IC base, the admixture is less than 0.1 ppb. In such 
a medium with perfect lattice structure, heat transferred by 
phonons would have a great contribution to heat conduction. 
Then the heat conduction would behave as a wave propa- 
gation. Moreover, it is believed that the possible cryogenic 
operating conditions introduced to speed up the system will 
enhance the wave phenomena. In fact one of the earliest 
experiments showing the wave behavior of temperature was 
performed in superfluid liquid helium by Peshkov. 

This paper addresses heat conduction in IC chip with 
special attention paid to the evaluation of heat wave effect 
and its importance for thermal analysis and design of IC 
chip. 

ANALYSIS 

As a simple model with emphasis on the evaluation of heat 
wave effects, a general IC element, for example, a resistor or a 
p-n junction, prepared with special technique such as doping 
with foreign substance onto the silicon base, was simply 
considered as a semi-spherical region (Fig. 1) with thermal 
physical properties such as those of silicon. Oscillatory cur- 
rent passes through and as a result Joule heat is generated 
inside this small region. If the surface is regarded as thermally 
insulated and the reflection of thermal wave on it was 
ignored, the problem can be taken as a one-dimensional (1 D) 
problem of heat conduction in an infinite solid, because the 
size of heating region (in the order of pm) is very small 

doping region 

Fig. 1. Simplified thermal model of IC element in silicon 
base. 

compared with the depth of silicon base (in the order of 
mm). 

Combining the C-V equation (2) with the energy equation 
in the spherical coordinate system results in the following 
hyperbolic heat conduction equation 

where g(r, t) represents the volumetric energy source in the 
medium. The boundary conditions and initial conditions are 
respectively 

aT 
- ar r=O 

= 0 and Tl,,, = 0 (5) 

f3T 
TI,=o = 0 and x I=o = 0. (6) 

The following dimensionless quantities are introduced for 
mathematical convenience in the analysis 

r 

x=2Jo h=; 

#y=pC,x* 
4%T x0 

G=‘$ 
0 0 

where constant term g0 represents the maximum value of 
volumetric energy generation in the whole medium and dur- 
ation. Applying the Fourier sine integration transforms pair 
in space variables as : 

m &?,h) = 
s 

0(x, h) sin (/Ix) dx (7) 
0 

@(x, h) = i 
s 

m &/I, h) sin (fix) dx 
D 

(8) 

we transfer the partial differential equations (4)-(6) to simple 
differential equations : 

fLO = 0 and z h=O = 0. (10) 
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The solution of elquations (9) and (10) can be obtained by 
a rather lengthy but straightforward series of manipulations 
including careful substitution of conditions and the inverse 
transformation. After arrangement, the solution appears as 

x 
1 dG(x’, h’) 

G(x’, h’) + 2dh’ x sin (px’) e-(*mr) 

sin (J(Z? - l)(h -h’)) 
X-- 

d’(P’ - 1) 

x sin (/Ix) dx’ dh’ dp. (11) 

The energy generation g(r, t) of single pulse in IC element is 
assumed to be a sqnare-corner switching wave form energy 
confined in the region of r < rO, 

for 0 < x’ i x, and 0 < h’ < h, 
(12) 

else 

where x,, and h, are dimensionless distance and dimensionless 
time corresponding to doped sphere radius r0 and heating 
pulse time I,. 

Assuming the order of integration of equation (11) is inter- 
changeable, paying attention to the term of dG(x’, h’)/dh’, 
and introducing new variables m = x-x’, n = h-h’, the 
final solution for the problem will be 

h X+X0 
0= 

s s 

x-m -- 
“4, m=x_xo 2x0 

.e-“. Zo(J(n’-m2))+ I, (J(rz’ - m')) dm dn 

where 

for n 7 Jrnj (13) 

h ;: h-ho for h 7 h, 
1 0 forh <ho 

la and Z, are modified Bessel functions of the first kind of 
zero order and first order, respectively. 

The temperature profile both in the doped area and the 
silicon base along all the duration can be determined from 
the numerical integration of equation (13) or a straight- 
forward but tedious integration of the series term, if Bessel 
function is expressed as series term. 

RESULTS AND DISCUSSIONS 

Figure 2 shows a typical plot of temperature vs position at 
various times obtained from equation (13) with a rather large 
relaxation time of 10-j s. The striking feature of the graph 
is the wave behavior of temperature, i.e. an energy pulse in 
a small region gives rise to a thermal wave front during a 
short time period which travels in the medium with a finite 
velocity of about 2.5 m s-‘. Unlike the results of diffusion 
equation, the temperature rise obtained from wave equation 
is limited within a small region and the region beyond 
remains undisturbed. The heat conduction acts as the trans- 
port of the ‘energy bulk’ with higher temperature. 

The wave nature of temperature in Fig. 2 is similar to 
that observed in liquid helium by Peshkov and examined 
theoretically by Vick and Ozisik [5], when an energy source 
with a wave form of delta function was applied, i.e. total 
energy is released spontaneously at time t = 0, in spite of the 
fact that the wave shape is not as sharp as that given by Vick 
and Ozisik. 

Z= 1 O-“(second) 
r,=4 micrometer) 
to= 1 6 (microsecond) 

0.00001 I,..,,...,,.,..!.,,.,..,,.~‘.,,,.,,,,,,rl 0 5 10 15 20 
POSITION r/r0 

Fig. 2. Heat wave propagation in the medium with a finite 
velocity of 2.5 m s-l. 

Figure 3 illustrates a temperature profile in medium at 
time t = 2 x to with different relaxation time. It is clear that 
the wave behavior of temperature creates the higher peak 
temperature than that predicted by pure diffusion mechanism 
of heat transport. With the decrease of relaxation time z, the 
heat transport dominated by wave switches gradually to that 
dominated by diffusion. 

It is obvious that the hyperbolic and parabolic equations 
based on different mechanisms would give a different average 
junction temperature and eventually affect the evaluation of 
the thermal reliability. 

The peak value in temperature profiles predicted by the 
hyperbolic equation can be as high as several times that by 
the parabolic. This higher peak temperature inevitably leads 
to the greater temperature gradient and the consequent 
higher thermal stroke, which will definitely speed up the 
failure rate of IC chips. It is well known that the thermal 
noise in the elements is critical for reliability of the working 
circuits. When the thermal noise in the medium is comparable 
with the working signal, an undesirable chaotic situation 
would occur. The probability of reversible failure related 
with thermal noise can greatly increase if a thermal wave 
appears, both for its higher peak temperature and its rapid 
oscillatory behavior. 

A much sharper spatial temperature change can be 
expected based on heat wave phenomena in IC chips. This 
results in a great temperature difference on elements which 
would raise a problem of sign skew for analogue circuits and 
cause the time difference on data transmission for digital 
circuits. 

In order to determine under what conditions the heat wave 
effect has to be considered in IC chips, a computational 
example will be given with typical parameters as: (1) the 
components size is 4 pm, as it is of the order of feature 
dimension for VLSI ; (2) the frequency of electrical pulse is 
10s Hz, which falls in to the range of 107-10’2 Hz for IC; (3) 
the volumetrical energy generation, g,,, is 7.34 x 10” W me3 
corresponding to total heat dissipation of about 3.7 W per 
chip, with assumed 10’ elements being integrated on a chip ; 
heat dissipation coming from 20% of the total elements and 
the pulse heating time is one-tenth of the shift period; (4) 
density p = 2330 kg rna3, thermal capacity C, = 700 J kg-’ 
K-’ and thermal conductivity K = 100 W m-l K-’ for both 
doped region and pure region of medium. 

The predicted temperature response to a heating pulse of 
1O-9 s in the solid with different relaxation time is represented 
in Fig. 3(a). It is clear that if the base material has a relaxation 
time longer than lO-9 s, hyperbolic and parabolic heat equa- 
tions may give very different temperature profiles in the 
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(b) 

Fig. 3. Temperature profiles in the material with different relaxation times when a heating pulse of lO-9 s (a) 
or lo-” s (b) is applied. 

medium. The hyperbolic equation predicts a peaked tem- 
perature profile confined in a small region, in contrast, the 
parabolic one predicts a gentle temperature slope within a 
rather wide region. With the relaxation time shorter than 
10e9 s, results from parabolic and hyperbolic equations are 
almost identical. Figure 3(b) shows that if the heat pulse 
period is as short as lo-” s, corresponding to a working 
frequency of lo-” Hz, heat wave effect is significant even in 
the medium with a relaxation time as short as lo-l2 s, which 
falls in the range of relaxation time for most solids. 

Noting that the critical value of relaxation time, which 
represents the lower limit for necessary consideration of heat 
wave effect, is in order of 10e9 s for a heating pulse period 
of lo-’ s [in Fig. 3(a)], and in order of lo-” s for heating of 
lo-‘* s [in Fig. 3(b)] ; we can draw the conclusion that effect 
should be taken into consideration when the heating release 
time approaches to the relaxation time or more concretely, 
when the product of shift frequency and the relaxation time 
is of approximately the order of 0.1. This is very close to that 
given by Yuen and Lee 163, who investigated the transient 
heat conduction when an oscillatory heat flux was applied 
on the surface of a semi-infinite medium. 

Some efforts have been put into the estimation or deter- 
mination of relaxation time of various kinds of materials 
theoretically and experimentally [7-g]. The typical value of 
relaxation time widely used is in the order of 10-8-10-‘o s 
for gases at standard conditions and 10-‘0-10-12 s for liquids 
and dielectric solids. For metals the typical value is between 
lo-” and lo-l4 s. Hence, according to our analysis assuming 
the relaxation time of silicon is the same order as that of 
dielectric solids, heat wave effects may be important at the 
upper limit of current density and working frequency of IC. 
We are already in a critical position to introduce wave effects 
in heat conduction analysis. 

For most materials used in microelectronics, such as singu- 
lar crystal silicon, a longer relaxation time could be expected 
because of the higher purity and perfect lattice structure 
with fewer vacancies and dislocations which strongly scatter 
phonons and lighten the wave behavior of heat propagation 
in silicon. In addition, a rather longer relaxation time can be 
expected if the chip is in cryogenic operation. 

CONCLUSIONS 

(1) The features of rapidly alternating current in IC chip 
and the perfect lattice structure of chip material may produce 
significant heat wave effects which cover a higher average 
junction temperature, a higher peak temperature, greater 
temperature difference between components and more rapid 
temperature change. These thermal effects are closely related 
to electrical failure mechanisms, such as electrical break- 
down, thermal noise, sign skew and sign delay. 

(2) A rough criterion is suggested, that is, if the product of 
shift frequency and the relaxation time of medium exceeds 0.1, 
it is necessary to take heat wave effects into consideration. 

(3) Further theoretical and experimental work is still 
needed on the temperature wave behavior and the estimation 
of the relaxation time of chip materials. 
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